Limites - Continuité - Dérivation - Etude de fonctions

f est la fonction définie par $f(x) = \sqrt{\frac{2x-1}{2x+1}}$.

a. Justifier que l'ensemble de définition de f est

- $\left]-\infty;-\frac{1}{2}\right[\cup\left[\frac{1}{2};+\infty\right].$
- b. Calculer les limites de f aux bornes de son ensemble
- c. Déterminer les intervalles sur lesquels la fonction f est dérivable et calculer f'(x) sur ceux-ci.
- d. Dresser le tableau de variations de f en y faisant figurer les limites calculées.

Exercice 56: f est la fonction définie par $f(x) = \sqrt{\frac{2x-1}{2x+1}}$

a. Justifier que l'ensemble de définition de f est $\left|-\infty, -\frac{1}{2}\right|$ U

$$\left[\frac{1}{2},+\infty\right[$$

f est définie si et seulement si $\frac{2x-1}{2x+1} \ge 0$ et si $(2x+1) \ne 0$.

On fait un tableau de signe de la fonction

x	-∞ -	$\frac{1}{2}$ $\frac{1}{2}$	+ ∞
2x - 1	-	-	o +
2x + 1	- (+	+
$\frac{2x-1}{2x+1}$	+		o +

Domaine de définition de f : $\left] -\infty, -\frac{1}{2} \right[\cup \left[\frac{1}{2}, +\infty \right]$

b. calculer les limites de f aux bornes de son ensemble de définition

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \sqrt{\frac{2x}{2x}} = 1$$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \sqrt{\frac{2x}{2x}} = 1 \qquad \qquad \lim_{x \to -\frac{1}{2}} f(x) = \lim_{x \to -\frac{1}{2}} \sqrt{\frac{2x-1}{2x+1}} = \lim_{x \to -\frac{1}{2}} \sqrt{\frac{-2}{0^-}} = +\infty$$

$$f\left(\frac{1}{2}\right) = 0$$

c. déterminer les intervalles sur lesquels la fonction f est dérivable et calculer f'(x) sur ceux-ci

Définition: f est dérivable en $\mathbf{a} \in \left[-\infty, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, +\infty\right]$ si et seulement si : $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \in \mathbb{R}$

1 Nombre derive et tonction derivee

Soit f une fonction définie sur un intervalle I et soit xo un point de I.

a - Fonction dérivable

On dit que f est dérivable en x₀ si l'une des deux conditions suivantes est réalisée :

 $\text{La fonction}: \quad h \! \to \! \frac{f(x_0 \! + \! h) - f(x_0)}{h} \ \text{ tend vers un réel L quand h tend vers 0}.$

La fonction: $x \to \frac{f(x) - f(x_0)}{x - x_0}$ tend vers un réel L quand x tend vers x₀.

Si la fonction f est dérivable en tout point x0 de l'intervalle I, on dit que la fonction f est dérivable sur I.

b - Nombre dérivé

Le réel L définit au paragraphe précédent est appelé le nombre dérivé de la fonction f en a et est noté: f' (x₀). On note ainsi:

$$f^{\,\prime}(x_0) = \lim_{h \to 0} \ \frac{f(x_0 + h) - f(x_0)}{h} \quad \text{ou } f^{\,\prime}(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{\frac{2(a+h)-1}{2(a+h)+1}} - \sqrt{\frac{2a-1}{2a+1}}}{h}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{\frac{2(a+h)-1}{2(a+h)+1}} - \sqrt{\frac{2a-1}{2a+1}}}{h} \times \frac{\sqrt{\frac{2(a+h)-1}{2(a+h)+1}} + \sqrt{\frac{2a-1}{2a+1}}}{\sqrt{\frac{2(a+h)-1}{2(a+h)+1}} + \sqrt{\frac{2a-1}{2a+1}}}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{2(a+h)-1}{2(a+h)+1} - \frac{2a-1}{2a+1}}{h \times \left(\sqrt{\frac{2(a+h)-1}{2(a+h)+1}} + \sqrt{\frac{2a-1}{2a+1}}\right)}$$

$$\frac{f(a+h) - f(a)}{h} = \frac{4h}{h \times \left((2(a+h) + 1) \times (2a+1) \right) \times \left(\sqrt{\frac{2(a+h) - 1}{2(a+h) + 1}} + \sqrt{\frac{2a - 1}{2a + 1}} \right)}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{4}{\left((2(a+h)+1)\times(2a+1)\right)\times\left(\sqrt{\frac{2(a+h)-1}{2(a+h)+1}} + \sqrt{\frac{2a-1}{2a+1}}\right)}$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{4}{\left((2(a+h) + 1) \times (2a+1) \right) \times \left(\sqrt{\frac{2(a+h) - 1}{2(a+h) + 1}} + \sqrt{\frac{2a - 1}{2a + 1}} \right)}$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{4}{\left((2a+1) \times (2a+1)\right) \times \left(\sqrt{\frac{2a-1}{2a+1}} + \sqrt{\frac{2a-1}{2a+1}}\right)}$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{4}{(2a+1)^2 \times 2 \times \sqrt{\frac{2a-1}{2a+1}}}$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{2}{(2a+1)^2 \times \sqrt{\frac{2a-1}{2a+1}}}$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{2}{(2a+1)^2} \times \sqrt{\frac{2a+1}{2a-1}} = f'(a)$$

$$f'(a)$$
 existe si et seulement si $a \in \left] -\infty, -\frac{1}{2} \right[\cup \left[\frac{1}{2}, +\infty \right[$

$$f(x)$$
 est dérivable si et seulement si $x \in \left] -\infty, -\frac{1}{2} \left[\cup \right] \frac{1}{2}, +\infty \right[$

Dérivée de la fonction :

$$\sqrt{w} \to \frac{w'}{2\sqrt{w}} \ si \ w > 0$$

Dans notre cas

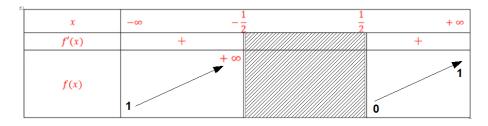
$$w = \frac{u}{v} \ avec \ u = 2x - 1 \ et \ v = 2x + 1$$

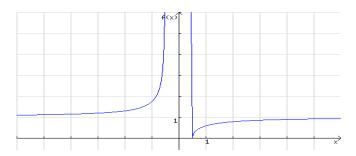
$$w' = \frac{u'v - uv'}{v^2} = \frac{2(2x+1) - 2(2x-1)}{(2x+1)^2} = \frac{4}{(2x+1)^2}$$

$$\forall x \in \left] -\infty, -\frac{1}{2} \right[\cup \left] \frac{1}{2}, +\infty \right[, f'(x) = \frac{2}{(2x+1)^2} \times \sqrt{\frac{2x+1}{2x-1}} \right]$$

d. dresser le tableau de variations de f en y faisant figurer les limites calculées

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \sqrt{\frac{2x}{2x}} = 1 \qquad \lim_{x \to -\frac{1}{2}} f(x) = \lim_{x \to -\frac{1}{2}} \sqrt{\frac{2x - 1}{2x + 1}} = \lim_{x \to -\frac{1}{2}} \sqrt{\frac{-2}{0^-}} = +\infty \qquad f\left(\frac{1}{2}\right) = 0$$





75 a. Conjecturer la limite en $+\infty$ de la fonction f définie par $f(x) = x^2 - 85x + 15$.

- b. Dresser le tableau de variations de f.
- c. Peut-on trouver un intervalle I de la forme $[a; +\infty[$ tel que, pour tout nombre réel $x \in I$, on a f(x) > 10000 ? Si oui, préciser cet intervalle.
- **d.** Résoudre l'inéquation f(x) > 10000. L'intervalle donné au **c** est-il compatible avec celui trouvé?

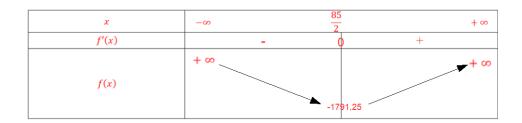
Exercice 75

a. Conjecturer la limite en $+\infty$ de la fonction f définie par $f(x) = x^2 - 85x + 15$

On peut conjecturer que si x tend vers $+\infty$ alors x^2 tend vers $+\infty$ donc f(x) tend vers $+\infty$

b. Dresser le tableau de variation de *f*

$$f'(x) = 2x - 85$$



c. Peut-on trouver un intervalle **I** de la forme $[a; +\infty[$ tel que, pour tout nombre réel $x \in I$ on a f(x) > 10000 ? Si oui, préciser cet intervalle.

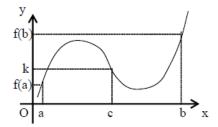
Corolaire du théorème des valeurs intermédiaires : On considère la fonction f définie, continue et strictement monotone sur un intervalle $[a; +\infty[$.

Pour tout réel k > f(a), l'équation f(x) = k admet une unique solution dans l'intervalle $[a; +\infty[$.

4° Théorème des valeurs intermédiaires

a - Enoncé

Soit f une fonction définie et continue sur un intervalle I. Soient a et b deux réels dans I. Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.



Ce théorème est utilisé pour prouver l'existence d'une solution d'une équation du type : f(x) = k

La fonction f(x) définie, continue et strictement monotone sur un intervalle $\left[\frac{85}{2}; +\infty\right]$.

L'équation f(x) > 10000 admet une unique solution dans l'intervalle $\left[\frac{85}{2}; +\infty\right]$.

d. Résoudre l'inéquation f(x) > 10000. L'intervalle donné au c est-il compatible avec celui trouvé?

$$f(x) = x^2 - 85x + 15 > 10000 \iff Soit g(x) = x^2 - 85x + 15 - 10000,$$

on veut la valeur de x tel que $g(x) > 0 \iff g(x) = x^2 - 85x - 9985 \iff \Delta = 85^2 + 4 \times 9985 = 47165$

$$a = \frac{85 + \sqrt{47165}}{2} \approx 152, \dots \in I \quad \Leftrightarrow \quad \forall x > a, g(a) > 0 \ donc \ f(x) > 10000 \quad \Leftrightarrow \quad I = \left[\frac{85 + \sqrt{47165}}{2}, +\infty\right]$$

f est la fonction définie sur]1 ; 3[par :

$$f(x) = \frac{1}{(x-1)(x-3)}.$$

a. Conjecturer la limite de f en 1 par la méthode de votre

b. Résoudre l'inéquation
$$\frac{1}{(x-1)(x-3)} < -1000$$
.

- c. En déduire le plus grand nombre réel a, arrondi au dix-millième, tel que si $x \in]1$; a[, alors f(x) < -1000.
- d. A est un nombre réel strictement positif.

Décrire la démarche pour trouver le plus grand nombre réel a tel que si $x \in]1$; a[, alors f(x) < -A.

Exercice 99

f est la fonction définie sur]1; 3[par

$$f(x) = \frac{1}{(x-1)(x-3)}$$

a. Conjecturer la limite de f en 1 par la méthode de votre choix.

$$f(1,1) = \frac{1}{(x-1)(x-3)} \approx 5$$

$$f(1,01) = \frac{1}{(x-1)(x-3)} \approx 50$$

$$f(1,1) = \frac{1}{(x-1)(x-3)} \approx 5$$
 $f(1,01) = \frac{1}{(x-1)(x-3)} \approx 50$ $f(1,001) = \frac{1}{(x-1)(x-3)} \approx 500$

On peut conjecturer que si x tend vers 1 alors f(x) tend vers $+\infty$

b. Résoudre l'inéquation $\frac{1}{(x-1)(x-3)} < -1000$

$$\frac{1}{(x-1)(x-3)} < -1000 \iff (x-1)(x-3) < -\frac{1}{1000} \iff x^2 - 4x + 3 + \frac{1}{1000} < 0$$

$$x^2 - 4x + \frac{3001}{1000} = 0 \iff \Delta = 16 - 4 \times \frac{3001}{1000} = \frac{16000 - 4 \times 3001}{1000} = \frac{3996}{1000}$$

$$(x_1; x_2) = \frac{4 \pm \sqrt{\frac{3996}{1000}}}{2} \approx (1,0005; 2,9995) \iff \forall x \in]1; x_1[\cup]x_2; 3[, \frac{1}{(x-1)(x-3)} < -1000]$$

c. En déduire le plus grand nombre réel **a**, arrondi au dix-millième, tel que si $x \in]1$; a[, alors f(x) < -1000

$$a = 1.0005$$

d. A est un nombre réel strictement positif. Décrire la démarche pour trouver le plus grand nombre réel tel que si $x \in$]1; a[alors f(x) < -A.

$$\frac{1}{(x-1)(x-3)} < -A \iff (x-1)(x-3) < -\frac{1}{A} \iff x^2 - 4x + 3 + \frac{1}{A} < 0 \iff x^2 - 4x + \frac{3+A}{A} = 0$$

$$\Delta = 16 - 4 \times \frac{3 + A}{A} = \frac{16A - 4 \times (3 + A)}{A} = \frac{12 \times (A - 1)}{A} \iff x_1 = 2 - \sqrt{\frac{3(A - 1)}{A}}$$

$$\forall x \in]1; x_1[\cup]x_2; 3[, \frac{1}{(x-1)(x-3)} < -1000$$

k est la fonction définie pour tout nombre réel k par $k(x) = e^{2x} - 5e^x + 3$.

a. En observant que $e^{2x} = e^x \times e^x$, étudier la limite de k

b. Montrer que $k(x) = e^{2x} \left(1 - \frac{5}{e^x} + \frac{3}{e^{2x}} \right)$.

En déduire la limite de k en +∞.

Exercice 129: k est la fonction définie pour tout nombre réel x par $k(x) = e^{2x} - 5e^x + 3$

Propriétés:

$\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x\to-\infty}e^x=0$	pour tout n entier, $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$	$pour tout n entier, \lim_{x \to -\infty} x^n e^x = 0$

a. En observant que $e^{2x} = e^x \times e^x$, étudier la limite de $k en - \infty$

$$k(x) = e^{2x} - 5e^x + 3 = e^x(e^x - 5) + 3$$

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to -\infty} k(x) = +3$$

b. Montrer que $k(x) = e^{2x} \left(1 - \frac{5}{e^x} + \frac{3}{e^{2x}} \right)$. En déduire la limite de k $en + \infty$

$$k(x) = e^{2x} - 5e^x + 3 = e^{2x} \left(1 - \frac{5}{e^x} + \frac{3}{e^{2x}} \right)$$

$$\lim_{x \to +\infty} e^x = +\infty \ donc \ \lim_{x \to +\infty} \frac{1}{e^x} = 0$$

$$\lim_{x \to +\infty} \left(1 - \frac{5}{e^x} + \frac{3}{e^{2x}} \right) = 1$$

$$\lim_{x \to +\infty} k(x) = +\infty$$

h est la fonction définie sur \mathbb{R} par :

$$h(x) = 1 - \frac{x - 1}{e^x}.$$

a. Vérifier que, pour tout nombre réel x :

$$h(x) = 1 - \frac{x}{e^x} + \frac{1}{e^x}.$$

- b. Calculer la limite de la fonction h en $+\infty$ et en $-\infty$.
- c. En déduire que la courbe représentative de la fonction

h admet une asymptote dont on précisera une équation.

Exercice 151 : h est la fonction définie sur R par :

$$h(x)=1-\frac{x-1}{e^x}$$

a. Vérifier que, pour tout réel $x : h(x) = 1 - \frac{x}{e^x} + \frac{1}{e^x}$

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$
 si c est non nul

$$\forall x \in R, e^x > 0 \ donc \ \frac{x-1}{e^x} = \frac{x}{e^x} - \frac{1}{e^x} \ donc \ h(x) = 1 - \frac{x}{e^x} + \frac{1}{e^x}$$

b. Calculer la limite de la fonction $h en + \infty et en - \infty$

$\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x\to-\infty}e^x=0$	pour tout n entier, $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$	$pour tout n entier, \lim_{x \to -\infty} x^n e^x = 0$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \left(1 - \frac{x}{e^x} + \frac{1}{e^x} \right) = 1$$

$$\lim_{x\to-\infty} h(x) = \lim_{x\to-\infty} (1-xe^{-x}+e^{-x}) = +\infty$$

c. En déduire que la courbe représentative de la fonction h admet une asymptote dont on précisera une équation.

$$\lim_{x\to+\infty}\boldsymbol{h}(x)=1$$

La droite D d'équation y=1 est asymptote horizontale à la courbe représentative de la fonction h au voisinage $de +\infty$