Arithmétique - Maths expertes en Terminale

```
on note A_n = n(2n+1)(7n+7), où n est un entier naturel.

1. Montrer que A_n est pair. (On pourra raisonner par disjonction de cas.)

2. Montrer que A_n est divisible par 3.

3. Le nombre A_n est-il divisible par 5 pour tout entier naturel n?
```

Q1) On raisonne par disjonction de cas :

Si n est pair, $\exists k \in Z$, n = 2.k	Si n est impair, $\exists k \in Z, n = 2k + 1$
$A_n = n(2n+1)(7n+7)$	$A_n = n(2n+1)(7n+7)$
= 2k(4k+1)(14k+7)	= (2k+1)[2(2k+1)+1][7(2k+1)+7]
= 4k(4k+1)(7k+1)	= (2k+1)[4k+3][14k+14]
Ainsi A_n est pair car multiple de 4.	$= 2(2k+1)[4k+3][7k+7] \text{ Ainsi } A_n \text{ est pair car multiple de 2}$

Finalement, $\forall n \in \mathbb{Z}$, A_n est pair

Q2) Montrer que An est divisible par 3 :

Division euclidienne : Soient **a** un entier relatif et **b** un entier naturel non nul. Il existe un unique couple d'entiers relatifs (q; r) tel que: $\mathbf{a} = \mathbf{qb} + \mathbf{r}$ et $\mathbf{0} \le \mathbf{r} < \mathbf{b}$, \mathbf{q} s'appelle le **quotient** et \mathbf{r} s'appelle le **reste** de la division euclidienne de a par b.

Propriété: Les restes possibles de la division euclidienne d'un entier relatif **a** par un entier naturel non nul **b** sont : **0**, **1**, **2**, ... , **b** -1.

Et par là, tout entier relatif a peut s'écrire: soit: bk, soit : bk+1 , soit: bk+2 , ... , soit: bk+b-1 (où k est un entier relatif)

On raisonne par disjonction de cas : $A_n = n(2n + 1)(7n + 7)$

 A_n est divisible par 3 donc **n** peut s'écrire soit 3k, soit 3k+1, soit 3k+2 (où k est un entier naturel).

Autre écriture : soit $A_n \equiv 0[3]$ ou soit $A_n \equiv 1[3]$ ou soit $A_n \equiv 2[3]$

• Si $A_n \equiv 0[3]$, n = 3.k, alors $A_n = 3k(6k + 1)(21k + 7) = 3k'$, avec k' = k(6k + 1)(21k + 7) entier naturel.

On constate donc que A_n est bien divisible par 3.

• Si
$$A_n \equiv 1[3]$$
, n = 3.k+1, alors $A_n = (3k+1)[2(3k+1)+1][7(3k+1)+7]$
$$= (3k+1)[6k+3][21k+14]$$

$$= 3(3k+1)[2k+1][21k+14] = 3k'$$
, avec $k' = (3k+1)[2k+1][21k+14]$ entier naturel.

On constate donc que A_n est bien divisible par 3.

• Si $A_n \equiv 2[3]$, n = 3.k+2, alors $A_n = (3k+2)[2(3k+2)+1][7(3k+2)+7]$

$$=(3k+2)[6k+5][21k+21]$$

= 3(3k+2)[6k+5][7k+7] = 3k', avec k' = (3k+2)[6k+5][7k+7] entier naturel.

On constate donc que A_n est bien divisible par 3.

Autre méthode avec le tableau des congruences

$n \equiv \cdots [3]$	≡ 0[3]	≡ 1[3]	≡ 2[3]
2n+1	$1 \Rightarrow \equiv 1[3]$	$3 \Rightarrow \equiv 0[3]$	$5 \Rightarrow \equiv 2[3]$
7n+7	7 ⇒ ≡ 1 [3]	$14 \Rightarrow \equiv 2[3]$	$21 \Rightarrow \equiv 0[3]$
A _n	0	0	0

 $A_n = \mathbf{0}[3]$, on constate donc que A_n est bien divisible par 3.

Q3) Le nombre An est-il divisible par 5 pour tout entier naturel n?

Méthode 1 : recherche d'un contre exemple :

$$A_n = n(2n+1)(7n+7), A_0 = 0$$
 et $A_1 = 3 * 14 = 42$ non divisible par 5

Si n = 1, $A_n = 42$ n'est pas divisible par 5 donc il existe n tel que A_n n'est pas divisible par 5.

Méthode 2 : divisibilité à l'aide des congruences

n	≡ 0[5]	≡ 1[5]	≡ 2[5]	≡ 3[5]	≡ 4[5]
n	0	1	2	3	4
2n	0	2	4	$6 \implies \equiv 1[5] = 1$	8 ⇒ ≡ 3[5] = 3
2n+1	1	3	$5 \implies \equiv 0[5] = 0$	2	4
7n	0	$7 \implies \equiv 2[5] = 2$	$14 \implies \equiv 4[5] = 4$	21 ⇒≡ 1[5] = 1	28 ⇒≡ 3[5] = 3
7n+7	$7 \Rightarrow \equiv 2[5] = 2$	9 ⇒ ≡ 4[5] = 4	$11 \Rightarrow \equiv 1[5] = 1$	$8 \Longrightarrow \equiv 3[5] = 3$	$10 \implies \equiv 0[5] = 0$
A _n	0	$12 \Longrightarrow \equiv 2[5] = 2$	0	$18 \Longrightarrow \equiv \mathbf{3[5]} = 3$	0

 A_n n'est pas divisible par 5.

Démontrer que pour tout entier naturel n, $3^{2n} - 2^n$ est divisible par 7.

Démontrer que pour tout entier naturel n, $3^{2n} - 2^n$ est divisible par 7

1ère méthode : Par récurrence

Soit la relation de récurrence $P_n: 3^{2n}-2^n$ est divisible par 7, $3^{2n}-2^n=7k$, avec k entier

Pour $n = 1: 3^2 - 2^1 = 9 - 2 = 7$ donc divisible par 7. **P₁ est vraie**.

Soit P_n supposée vraie $3^{2n} - 2^n = 7k$

Alors vérifions que c'est vrai pour P_{n+1} :

$$3^{2(n+1)} - 2^{n+1} = 3^{2n} 3^2 - 2^1 2^n$$

$$= 9 \times 3^{2n} - 2 \times 2^n$$

$$= 7 \times 3^{2n} + 2 \times 3^{2n} - 2 \times 2^n$$

$$= 7 \times 3^{2n} + 2 \times (3^{2n} - 2^n)$$

$$= 7 \times 3^{2n} + 2 \times 7k$$

$$= 7 \times (3^{2n} + 2k) \text{ est un multiple entier de 7}$$

 $Donc: P_{n+1} \ est \ vraie$

Conclusion: Pn est vraie pour tout entier n.

2ème méthode : Par les congruences

On cherche les restes des divisions par 7 de 3^{2n} et de 2^n .

$$3^{2n} = 9^n$$

n	0	1	2	3	4	5	6
9^n	1	9	81	729	6 561	59 049	531 441
9^n	≡ 1[7]	≡ 2[7]	≡ 4[7]	≡ 1[7]	≡ 2[7]	≡ 4[7]	≡ 1[7]
2^n	1	2	4	8	16	32	64
2 ⁿ	≡ 1[7]	≡ 2[7]	≡ 4[7]	≡ 1[7]	≡ 2[7]	≡ 4[7]	≡ 1[7]
$9^{n}-2^{n}$	0	0	0	0	0	0	0

 $9^n - 2^n$ est divisible par 7 quelque soit n entier naturel.

On considère l'équation suivante.

(E):7x+4 \equiv 0[5] où $x \in \mathbb{Z}$.

1. Vérifier que tous les termes de la suite arithmétique de premier terme -62 et de raison 5 sont solution de l'équation (E).

2. Déterminer toutes les solutions de l'équation (E).

On considère l'équation suivante (E) : $7x + 4 \equiv 0[5]$ où $x \in \mathbb{Z}$.

1) Vérifier que tous les termes de la suite arithmétique de premier terme - 62 et de raison 5 sont solution de l'équation (E)

Définition : Une suite (U_n) est une suite arithmétique s'il existe un nombre r tel que $U_{n+1} = U_n + r$. Le nombre r est appelé raison de la suite.

$$U_{n+1} = U_n + 5 \ avec \ U_0 = -62$$

Soit la relation de récurrence P_n :

On veut démontrer que (U_n) est divisible par 5

Pour n = 0 : $U_0 = -62$ est solution de (E) car 7(-62) + 4 = -430 est multiple de 5. P₁ est vraie.

On suppose vraie la proposition (P_n) : $U_n = k \times 5$

Alors vérifions que c'est vrai pour (P_{n+1}) : $U_{n+1} = U_n + 5 = k \times 5 + 5 = 5 \times (k+1)$

Conclusion : (P_n) est vraie pour tout entier n.

2) Déterminer toutes les solutions de l'équation (E) $7x + 4 \equiv 0[5]$ où $x \in \mathbb{Z}$.

$$7x + 4 \equiv 0[5] \Leftrightarrow 7x \equiv -4 + 0[5]$$

$$7x + 4 \equiv 0[5] \Leftrightarrow 7x \equiv -4[5]$$

$$7x + 4 \equiv 0[5] \Leftrightarrow 7x = -4 + 5k = 1 + 5k'$$

$$7x + 4 \equiv 0[5] \Leftrightarrow 7x \equiv 1[5]$$

x modulo 5	0	1	2	3	4
7x modulo 5	0	2	4	1	3

$$7x + 4 \equiv 0[5] \Leftrightarrow x \equiv 3[5]$$
$$\exists k \in \mathbb{Z}, x = 5k + 3$$
$$S = \{5k + 3, k \in \mathbb{Z}\}$$

Soit n un entier naturel. 1. a. Vérifier que $n^2 + n - 9 = (n+4)(n-3) + 3$ b. En déduire le quotient et le reste de la division euclidienne de $n^2 + n - 9$ par (n+4). 2. Peut-on faire de même si on prend (n-3) comme diviseur ? Justifier.

Soit n un entier naturel.

Q1) a. Vérifier que
$$n^2 + n - 9 = (n + 4)(n - 3) + 3$$

$$(n+4)(n-3) + 3 = n^2 - 3n + 4n - 12 + 3 = n^2 + n - 9$$

Q1) b. En déduire le quotient et le reste de la division euclidienne de $n^2 + n - 9$ par (n+4).

$$a = bq + r avec r < q$$

$$a = n^2 + n - 9$$
 et $b = (n + 4)$

$$q = (n - 3) et r = 3$$

Q2) Peut-on faire de même si on prend (n-3) comme diviseur ? Justifier.

$$a = bq + r avec r < q$$

$$a = n^2 + n - 9$$
 et $b = (n - 3)$

$$q = (n + 4) et r = 3$$

38

Calculer

Résoudre dans ${\Bbb Z}$ les équations suivantes.

a. $327 \equiv x$ [11] et $0 \le x < 11$.

b. $5x \equiv 2$ [7] et -3 < x < 12.

c. $17 - x \equiv 2$ [13] et -25 < x < 5.

Calculer

Résoudre dans Z les équations suivantes

a.
$$327 \equiv x[11] \ et \ 0 \le x < 11$$

b.
$$5x \equiv 2[7] et - 3 < x < 12$$

c.
$$17 - x \equiv 2[13] et - 25 < x < 5$$

a. $327 \equiv x[11]$ et $0 \le x < 11$ donc 327 = 11k + x avec $k \in \mathbb{Z}$

$$327 \equiv x[11] \Leftrightarrow x \equiv 327[11]$$

$$327 = 29 \times 11 + 8$$

$$327 \equiv x[11] \Leftrightarrow x \equiv 8[11]$$

$$\exists k \in \mathbb{Z}, x = 11k + 8$$

$$S = \{8 + 11k, k \in \mathbb{Z}\}$$

$$0 \le x < 11 \ donc \ S = \{8 + 11k, k = 0\}$$

b. $5x \equiv 2[7] \ et - 3 < x < 12 \ donc \ 5x = 7k + 2 \ avec \ k \in \mathbb{Z}$

x modulo 7	-2	-1	0	1	2	3	4	5
5x modulo 7	-3	-5	0	5	3	1	6	4

x modulo 7	6	7	8	9	10	11
5x modulo 7	2	0	5	3	1	6

$$5x \equiv 2[7] \Leftrightarrow x \equiv 6[7]$$

$$\exists k \in \mathbb{Z}, x = 7k + 6$$

$$\mathcal{S} = \{6 + 7k, k \in \mathbb{Z}\}$$

$$-3 < x < 12 \ donc \ S = \{6 + 7k, k = (-1; 0)\}$$

c.
$$17 - x \equiv 2[13] \ et - 25 < x < 5 \ donc \ 17 - x = 13k + 2 \ avec \ k \in \mathbb{Z}$$

$$17 - x \equiv 2[13]$$

$$-x \equiv -17 + 2[13]$$

$$-x \equiv -15[13]$$

$$x \equiv 15[13]$$

$$x \equiv 2[13]$$

$$\exists k \in \mathbb{Z}, x = 13k + 2$$

$$\mathcal{S} = \{2 + 13k, k \in \mathbb{Z}\}$$

$$-25 < x < 5 \ donc \ S = \{6 + 7k, k = (-2; -1; 0)\}$$