

## Solara AirCar-2 — Investor-Ready Deck

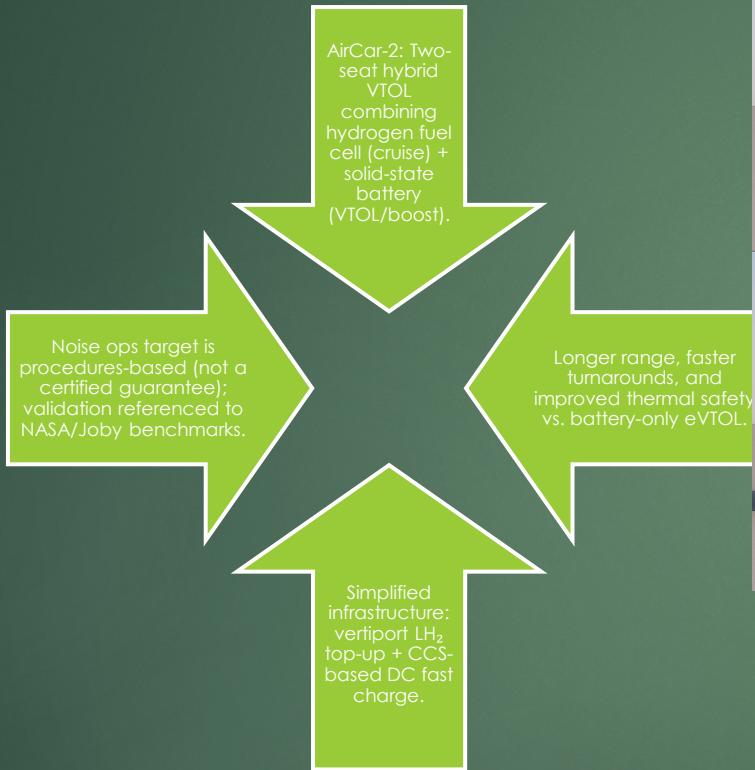


Two-seat hybrid VTOL enabling medical priority shuttles with fast LH<sub>2</sub> + DC charge turnarounds.

# Urban Mobility Pain Points



Hospital–airport–CBD corridors waste hours; ground alternatives are unreliable and congested.

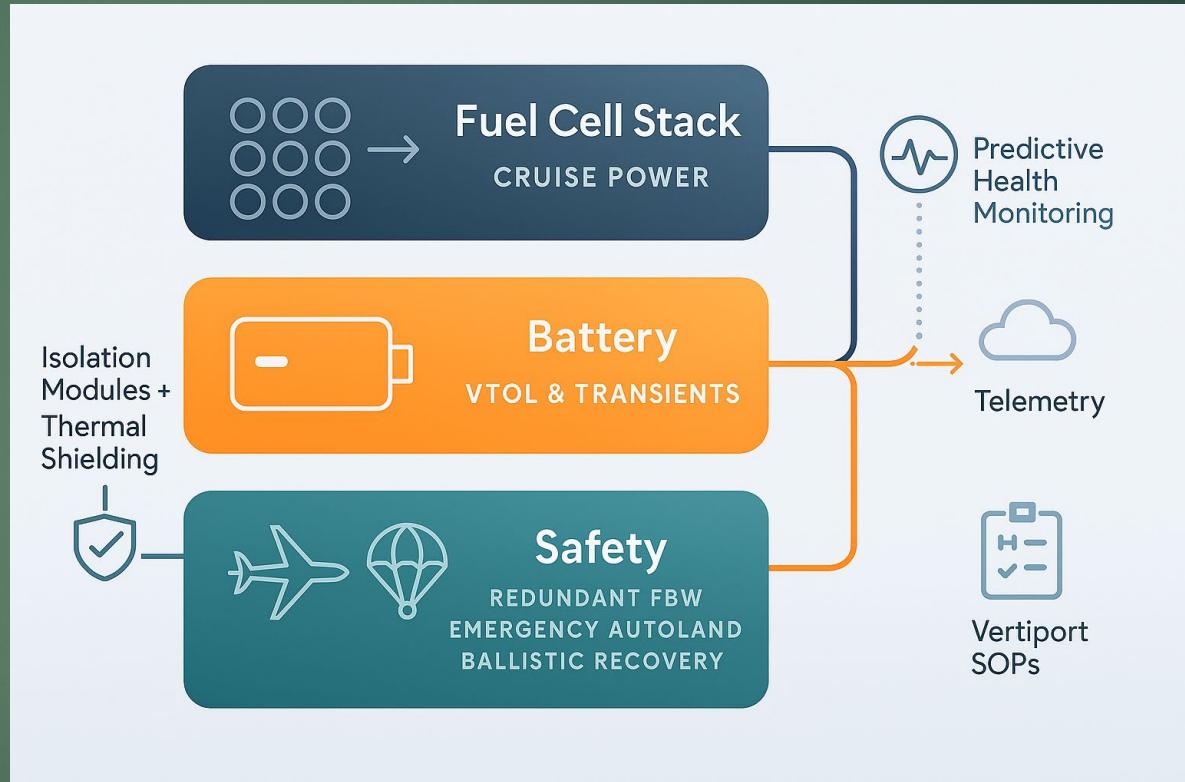



Legacy rotorcraft remain noisy, emissions-heavy, and costly to operate.



Critical transfers (patients/organs/samples) require predictable, fast, safe hops across metro regions.

# Solution: Hybrid Advantage




Parametric pre-bench estimates; reserves policy A/B

Noise targets validated against NASA/Joby benchmarks ( $\leq 65$  dBA @ 100 m VTOL;  $\sim 45.2$  dBA at 500 m cruise); operations remain procedures-based.

# Hybrid System Architecture & Safety

- ▶ Fuel Cell Stack (Cruise Power)
- ▶ Battery (VTOL & Transients)
- ▶ Isolation Modules + Thermal Shielding (callout with shield icon)
- ▶ Safety Layer (Redundant FBW, Emergency Autoland, Ballistic Recovery)
- ▶ Predictive Health Monitoring (sensor icon)
- ▶ Telemetry (cloud icon)
- ▶ Vertiport SOPs (checklist icon)



# Initial Use-Cases & Segments

## The Solara Air Car2: Freedom in Motion

- **Go Anywhere, Anytime** – No more waiting, no more traffic. The Solara gives you direct access to hospitals, airports, city centers—or anywhere life takes you.
- **Personal Air Mobility** – A sleek two-seat design built for individuals who value independence and control. Commute across urban segments (7–25 miles) or escape regionally (50–150 miles) with ease.
- **Life Without Limits** – Whether it's a quick hop to a meeting, a weekend getaway, or delivering something critical, The Solara makes mobility personal, fast, and effortless.



# Competitive Landscape

| Platform        | Seats            | Range Focus                    | Turnaround                                     | Cert Path                                     |
|-----------------|------------------|--------------------------------|------------------------------------------------|-----------------------------------------------|
| Solara AirCar-2 | 2                | Regional (up to 700 mi target) | $LH_2 \leq 15$ min + fast charge $\leq 10$ min | FAA Part 21 Special Class (powered-lift)      |
| Joby S4         | Pilot + 4        | ~100 mi                        | DC fast charge (GEACS)                         | FAA Special Class; Final criteria Mar 8, 2024 |
| Archer Midnight | Pilot + 4        | Optimized ~20 mi               | ~10 min between trips                          | FAA Special Class powered-lift                |
| BETA Alia A250  | Pilot + 5 (var.) | Regional eVTOL/CTOL variants   | DC fast charge network                         | FAA Special Class (in progress)               |
| Vertical VX4    | Pilot + 4        | Urban/regional                 | CCS-based fast charge                          | EASA/CAA pathways                             |

Charging note: Industry converging on CCS (BETA, Archer, Vertical). GEACS deployed with Atlantic Aviation; Solara will support CCS primary with GEACS adaptor.

Confidential — Solara AirCar-2 Investor Deck (Ready Version) — December 2025 • lawrence.woods@thesolaracollective.com • +1 201-380-6565

• Sources: FAA/Joby/Archer/BETA/Vertical public releases.

# Business Model & Revenue Streams



Hardware: sales/lease;  
spares kits; upgrade  
pathways.



Ops SLA: ground  
handling, dispatch,  
turnaround fees.



Training: pilot,  
maintenance,  
vertiport staff.



Energy: LH<sub>2</sub> + fast  
charge tariffs; pack  
subscription.



SaaS: flight ops,  
scheduling, health  
monitoring.



Support: MRO, AOG,  
remote diagnostics.

# Energy Pricing Context &

## Strategic Context

| Item                                    | Cost (\$)    |
|-----------------------------------------|--------------|
| Energy (1.5 kg LH <sub>2</sub> + 8 kWh) | \$30         |
| Maintenance (0.375 hrs @ \$120/hr)      | \$45         |
| Crew/Insurance                          | \$75         |
| Revenue (2 seats × 70% × \$120)         | \$168        |
| Contribution                            | \$18 (10.7%) |

## Energy Pricing Overview

### Retail LH<sub>2</sub> Pricing (2024–2025):

\$30–\$36/kg (California pump data)

### Contracted LH<sub>2</sub> Strategy:

Target \$14–\$18/kg via supply agreements

### DC Fast Charge Bands:

\$0.12–\$0.30/kWh

**Risk Factors:** Volatility, station uptime (CARB/CEC reports)

**Mitigation:** Index/hedge structure to stabilize margins

*Dual base cases shown: Contracted LH<sub>2</sub> (\$14–\$18/kg) vs Retail LH<sub>2</sub> (\$30–\$36/kg); DC fast charge \$0.12–\$0.30/kWh; margin sensitivity follows.*

*Source: NREL vertiport power/demand context.*

# CAPEX SUMMARY & DEPRECIATION



## CAPEX COMPONENTS

| COMPONENT                                        | DESCRIPTION                                          |
|--------------------------------------------------|------------------------------------------------------|
| Aircraft purchase or lease                       | \$1.2M per unit (based on current eVTOL prototypes)  |
| Vertiport kit (pads, power cabinets)             | \$150K per site (modular vertiport estimates)        |
| LH <sub>2</sub> skid (storage & transfer system) | \$80K per system (hydrogen storage industry average) |
| CCS fast-charging cabinets                       | \$50K per cabinet (EV fast-charging benchmarks)      |

## DEPRECIATION & MAINTENANCE

| ITEM                  | NOTES                           |
|-----------------------|---------------------------------|
| Depreciation schedule | Based on major asset life cycle |
| Maintenance reserves  | Airframe and energy systems     |
| Depreciation schedule | Airframe and energy systems     |

# UTILIZATION & COST ASSUMPTIONS



Assumptions based on AirCar 2 prototype;  
subject to change post-certification.

| UTILIZATION ASSUMPTIONS |              | OPERATING COSTS      |                     |
|-------------------------|--------------|----------------------|---------------------|
| UTILIZATION             | ASSUMPTIONS  | Energy cost per hour | Maintenance reserve |
| Daily flight hours      | 3 hours      | \$30                 | \$4K per year       |
| Typical mission range   | 50–150 miles |                      |                     |

# Unit Economics Sensitivity — Energy Pricing

Energy pricing context: CA retail H<sub>2</sub> printed ~\$30–\$36/kg in 2024–2025; strategy uses contracted delivered LH<sub>2</sub> below

| H <sub>2</sub> \$/kg \ kWh<br>\$/kWh | 0.12                            | 0.20                            | 0.30                            |
|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 10                                   | Energy \$16.0  <br>Margin 19.1% | Energy \$16.6  <br>Margin 18.7% | Energy \$17.4  <br>Margin 18.2% |
| 16                                   | Energy \$25.0  <br>Margin 13.7% | Energy \$25.6  <br>Margin 13.3% | Energy \$26.4  <br>Margin 12.9% |
| 30                                   | Energy \$46.0  <br>Margin 1.2%  | Energy \$46.6  <br>Margin 0.8%  | Energy \$47.4  <br>Margin 0.4%  |
| 36                                   | Energy \$55.0  <br>Margin -4.1% | Energy \$55.6  <br>Margin -4.5% | Energy \$56.4  <br>Margin -5.0% |

## Procurement & Hedging

- Delivered LH<sub>2</sub> vs GH<sub>2</sub> price bands (contracted)
- Index/hedge structure to stabilize margins
- Energy bench validation program for consumption assumptions

Retail vs contracted context: Retail pump pricing bands ~\$30–\$36/kg (CA 2024–2025).

Sources: S&P Global/Platts; FuelCellsWorks recap <https://fuelcellsworks.com/2024/10/02/news/california-hydrogen-pump-prices-for-light-duty-vehicles-reach-new-highs>

# Certification & Safety Plan (Summary)

U.S.: FAA Part 21 Special Class (powered-lift). AC 21.17-4 (Jul 18, 2025) provides performance-based MoCs.

Ops & pilots: SFAR No. 120 (Part 194) final rule Nov 21, 2024; 10-year framework for powered-lift operations.

EASA: SC-VTOL Enhanced for passenger ops over congested areas.

Compliance stack: ARP4754A/4761; DO-178C/254; DO-160; DO-326A.

## Engagement Plan

- DER/ODA invitations issued across powered-lift certification domains
- Pre-submittal reviews scheduled (Q2–Q4 2026)

# Means of Compliance — Key Areas

- ▶ Handling qualities, control laws, and transition: performance-based MoCs per AC 21.17-4.
- ▶ Energy isolation, thermal runaway, fire protection, EWIS: propose MoCs tailored to fuel cell + battery architecture.
- ▶ Crashworthiness & continued safe flight/landing: analysis + tests per ARP4754A/4761, DO-160.
- ▶ Noise certification: Part 36 applicability case-by-case; supplemental criteria if required.  
Noise ops procedures: pre-test vs NASA/Joby benchmarks; case-by-case Part 36 applicability. Source: Joby/NASA press (See QR Index slide for source: [www.jobyaviation.com/news/joby-revolutionary-low-noise-footprint-nasa-testing/](http://www.jobyaviation.com/news/joby-revolutionary-low-noise-footprint-nasa-testing/))

# Turnaround & Infrastructure — Evidence & Programs



LH<sub>2</sub>/GH<sub>2</sub> pathway: SOPs for connect/disconnect, purging, chill-down, transfer; fuelling targets ≤15 min subject to safety separation.



EU demonstrations: ALRIGH2T (airport-level LH<sub>2</sub> refuelling) and Airbus GOLIAT (LH<sub>2</sub> ops at multiple airports).



Battery fast charge: industry converging on CCS-based DC fast charging for interoperability.



Vertiport power planning: MW-class per-pad demand; utility coordination and microgrids recommended.

NYC pad readiness: Atlantic Aviation preparing East 34th St Heliport for CCS + GEACS; utility upgrades planned.

*Charging at E.34th is under preparation (CCS + GEACS); commissioning schedule aligns with early eVTOL entry-into-service.*

# AirCar-2 Prototype

Freedom in Motion



- Two-seat hybrid VTOL designed for personal nobility
- Enables medical priority hops and premium urban travel
- Current status: Energy bench commissioning and hover rig validation underway





# Certification Roadmap

- FAA Part 21 Special Crass (powered-lift)
- Ops & Pilots: SFAR Part 194 framework
- EASA SC-VTOL harmonization

**Q3 2028**

# Solara - Lineup



AirCar2 – Personal Mobility



AirCar15 – Passenger (Regional)



AirCar7 – Passenger (Local)



AirLift – Cargo/First Response

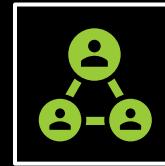
# Roadmap — 2026–2027

| Milestone                                      | Target Date |
|------------------------------------------------|-------------|
| Energy bench commissioned                      | Q1 2026     |
| Subscale lift rig hover                        | Q2 2026     |
| Integrated turnaround demo                     | Q3 2026     |
| Conformity article preparation                 | Q4 2026     |
| Pilot ops (Manhattan ↔ JFK/LGA;<br>JCMC ↔ EWR) | Q2 2027     |

## Gate Criteria (Objective)

- Energy bench: efficiency & safety matrix complete (DO-160 thermal/electrical) — PASS/FAIL
- Sub-scale hover: stability, acoustic pre-test, energy partition validation — PASS/FAIL
- Turnaround demo: SOPs for LH<sub>2</sub> + DC fast charge validated with safety separation — PASS/FAIL
- Conformity article: configuration control & inspections scheduled — PASS/FAIL

# Top Risks & Mitigations


- Technical: energy system integration, thermal/fire (Mitigation: isolation, shielding, test campaigns).
- Regulatory: MoC acceptance timelines (Mitigation: engage DERs; pre-submittal reviews).
- Supply chain: LH<sub>2</sub> availability and pricing volatility (Mitigation: contracted supply; hedging; dual-source).
- Ops: vertiport power and fuelling throughput (Mitigation: microgrids; staged operations; SOP training).
- Community: noise and flight path acceptance (Mitigation: procedures; outreach; continuous monitoring).

Confidential — Solara AirCar-2 Investor Deck (Ready Version) — December 2025  
lawrence.woods@thesolaracollective.com  
+1 201-380-6565

# Core Team & Advisor Targets



Lawrence K. Woods —  
Founding Executive  
Chairman & Project  
Architect.



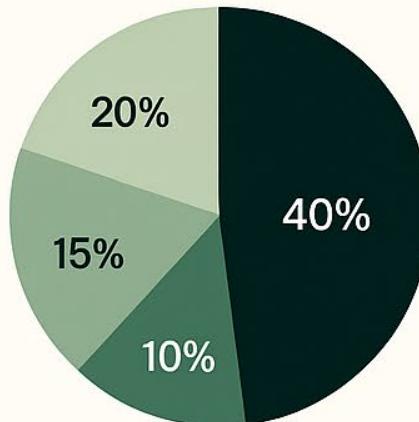
Assia Wilson — Executive  
Liaison & Strategic  
Coordinator.



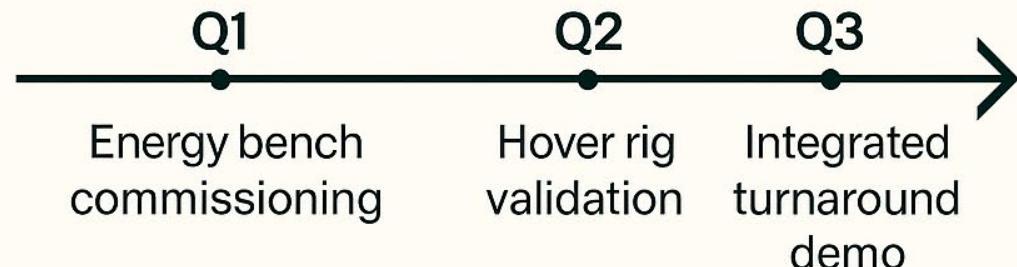
Advisors (targeted):  
Certification DERs/ODAs;  
Hydrogen safety;  
Composites; Flight  
controls; Vertiport ops.

- Confidential —  
Solara AirCar-2  
Investor Deck  
(Ready Version) —  
December 2025 •  
[lawrence.woods@thesolaracollective.com](mailto:lawrence.woods@thesolaracollective.com) • +1 201-380-6565

# Ask & Use of Funds – \$18M SAFE Raise




## Funding


- \$18M SAFE raise
- Allocation:
  - Engineering 40%
  - Certification 25%
  - Ops 15%, Infra
  - 10%, Contingency

## Exit

- IPO or **strategic acquisition** by aerospace OEM



## Pipeline



## Milstone-linked burn plan

- Energy bench commissioning
- Hover rig validation
- Integrated turnaround demo



# Valuation, Growth Drivers & Key Assumptions

## Valuation Strategy

The \$60M SAFE agreement with 20% discount reflects confidence in proprietary hybrid hydrogen propulsion technology and scalability.

## Growth Drivers

Certification milestones, flight demonstrations, pre-orders, and strategic partnerships drive market penetration and value creation.

## Manufacturing Readiness

Pilot production sites and a strong supply chain are critical to scaling manufacturing and accelerating growth.

## Key Assumptions & KPIs

Monitoring KPIs like flight hours, unit backlog, and margin improvements supports valuation and operational execution.



# Financial Forecast & Exit Scenarios

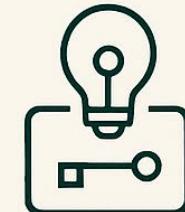


# 5-Year Forecast & ROI Pathways

| YEAR | UNITS  | REVENUE | GM % | GROSS PROFIT | EBITDA |
|------|--------|---------|------|--------------|--------|
| Y1   | 200    | \$36M   | 25%  | \$9M         | -\$51M |
| Y2   | 1,000  | \$180M  | 30%  | \$54M        | -\$26M |
| Y3   | 3,000  | \$540M  | 35%  | \$189M       | \$69M  |
| Y4   | 7,500  | \$1.35B | 38%  | \$513M       | \$313M |
| Y5   | 12,000 | \$2.16B | 40%  | \$864M       | \$584M |

# Emerging Market Strategy – Solara's Global Control

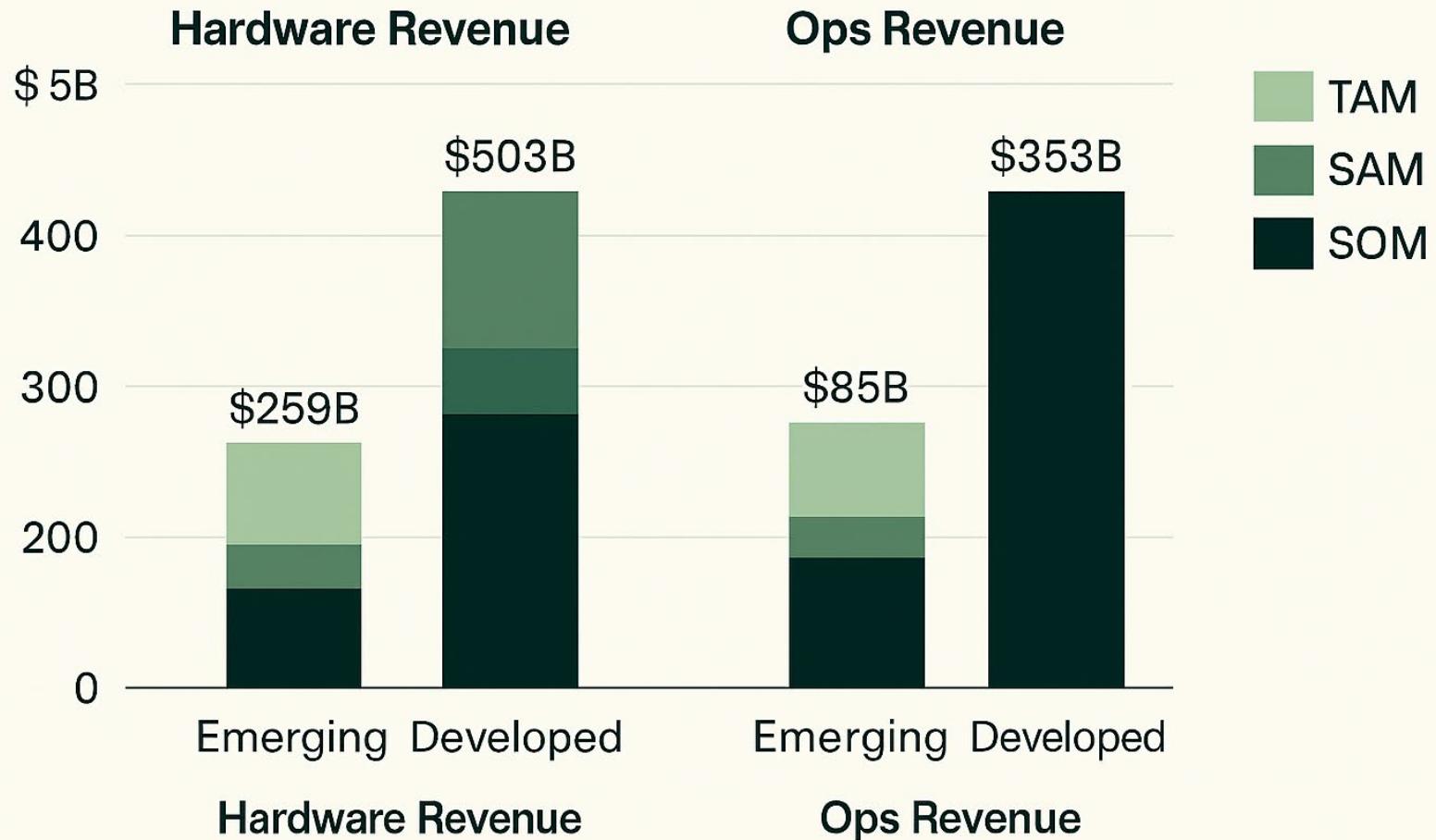
## Why Emerging Markets?


- **Urbanization Surge:** Africa & Asia will account for 90% of global urban growth by 2050.
- **Mobility Gaps:** Congested roads + limited hospital connectivity → strong demand for medical priority shuttles and airport connectors
- **Energy Synergy:** Hydrogen + microgrid infrastructure aligns with sustainability mandates and government incentives

## Market Impact

- **TAM Expansion:** Emerging markets add \$259B hardware TAM and \$85B annual ops TAM (Base scenario)
- **Defensible Moat:** Infrastructure + IP + regulatory influence = long-term dominance
- **Strategic Goal:** Command ecosystem control in Africa, South Asia, and LATAM → recurring revenue from aircraft, energy, and ops

## Solara's Control Levers


- **Vertiport Infrastructure Ownership**  
Deploy LH<sub>2</sub> + CCS fast-charge pads; license SOPs for safety and turnaround
- **Regulatory Partnerships**  
Shape powered-lift frameworks early; secure favorable operating corridors



# References & Programs

1. FAA AC 21.17-4 — Powered-lift Certification Guidance (Jul 18, 2025)  
<https://www.faa.gov/media/80526>
2. SFAR No. 120 / Part 194 — Powered-Lift Ops/Pilot (Final Rule Nov 21, 2024)  
<https://www.govinfo.gov/content/pkg/FR-2024-11-21/pdf/2024-24886.pdf>
3. eCFR Part 194 — Powered-Lift Ops/Pilot (current) <https://www.ecfr.gov/current/title-14/chapter-I/subchapter-L/part-194>
4. Joby JAS4-1 — Final Special Class Airworthiness Criteria (Mar 8, 2024)  
<https://www.federalregister.gov/documents/2024/03/08/2024-04690/airworthiness-criteria-special-class-airworthiness-criteria-for-the-joby-aero-inc-model-jas4-1>
5. NASA/Joby Acoustic Testing — 45.2 dBA @500 m; <65 dBA @100 m  
<https://www.jobyaviation.com/news/joby-revolutionary-low-noise-footprint-nasa-testing/>
6. NREL Vertiport Electrical Infrastructure Study (Dec 2023)  
<https://www.nrel.gov/docs/fy24osti/86245.pdf>
7. ALRIGH2T — Airport-level LH<sub>2</sub> refuelling demos (EU Horizon 101138105)  
<https://cordis.europa.eu/project/id/101138105>
8. Airbus GOLIAT — LH<sub>2</sub> ground ops at EU airports <https://www.research.airbus.com/en/products-systems/goliat>

# Emerging vs. Developed Markets



# References — QR Index



1. FAA AC 21.17-4



2. SFAR No. 120 / Part 194



3. eCFR Part 194



4. Joby JAS4-1



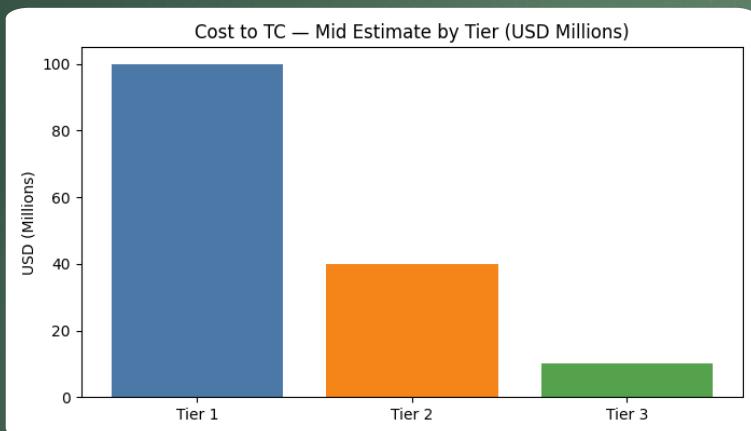
5. NASA/Joby Acoustic Testing



6. NREL Vertiport Electrical Infrastructure Study (Dec 2023)

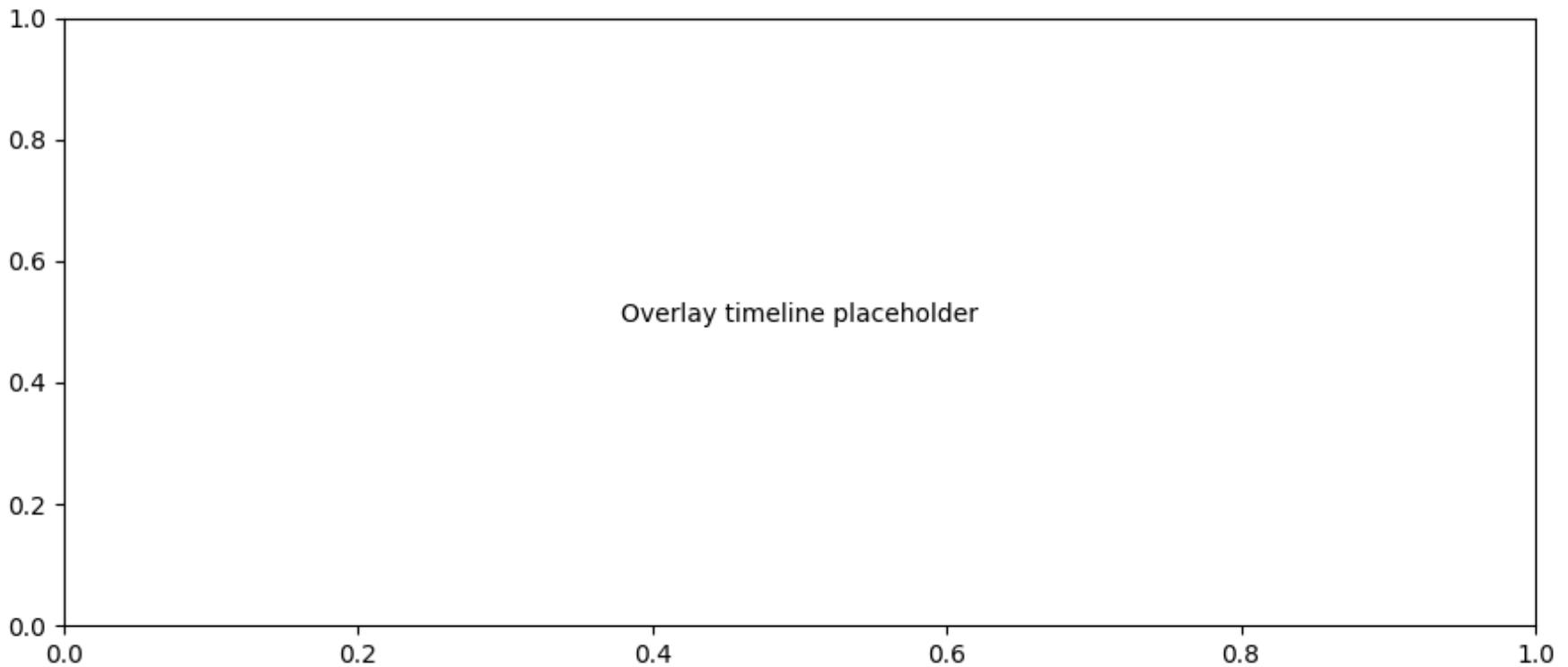


8. Airbus GOLIAT


# Executive Summary

---

## AirCar-2 at a Glance


- ▶ Two-seat hybrid VTOL (hydrogen fuel cell cruise + solid-state battery VTOL/boost) for medical priority shuttles and premium urban-regional hops.
- ▶ Key targets: Range up to 700 mi; turnaround  $\leq$  15 min LH<sub>2</sub> +  $\leq$  10 min DC fast charge; operational noise  $\leq$  65 dBA @ 100 m (aim  $\leq$  60 dBA) — procedures-based; validation vs NASA/Joby benchmark. (procedures + validation).
- ▶ Initial corridors: Manhattan  $\leftrightarrow$  JFK/LGA; Jersey City Medical Center  $\leftrightarrow$  EWR (per-seat scheduled + charter; medical priority windows).
- ▶ Certification: FAA Part 21 Special Class (powered-lift) guided by AC 21.17-4; SFAR No. 120 / Part 194 for ops/pilots; EASA SC-VTOL/VCA Issue 2 awareness.
- ▶ Raise: \$18M SAFE | \$60M cap | 20% discount | 18-month runway aligned to Means of Compliance acceptance & demo gates.
- ▶ Use of funds: Engineering 40% • Certification 25%
  - Operations 15% • Infrastructure & pilot sites 10%
  - Contingency 10%.

# Cost to Type Certification (TC) — By Tier



- Tiered vendor engagement reduces TC cost & schedule risk:
  - Tier 1: certification-critical systems (battery/BMS/thermal, propulsion, avionics SW/HW, flight controls, structures)
  - Tier 2: HIL/SIL rigs, harnesses, sensors, redundancy systems for compliance artifacts
  - Tier 3: interiors, composites finishing, test instrumentation, QA/AS9100 tooling post-integration

# Vendor Engagement vs Certification Milestones

